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Abstract

Vision Language Models (VLMs) have demonstrated signif-
icant potential in various downstream tasks, including Im-
age/Video Generation, Visual Question Answering, Multi-
modal Chatbots, and Video Understanding. However, these
models often struggle with basic image transformations.
This paper investigates the image-level understanding of
VLMs, specifically CLIP by OpenAI and SigLIP by Google.
Our findings reveal that these models lack comprehension
of multiple image-level augmentations. To facilitate this
study, we created an augmented version of the Flickr8k
dataset, pairing each image with a detailed description of
the applied transformation. We further explore how this de-
ficiency impacts downstream tasks, particularly in image
editing, and evaluate the performance of state-of-the-art
Image2Image models on simple transformations.

1. Introduction

Vision Language Models like CLIP [21] and SigLIP [36]
have emerged as powerful frameworks that incorporate vi-
sual and text encoders aligned via large-scale pre-training
on image-text pairs. These models have demonstrated im-
pressive performance across various downstream tasks, in-
cluding Text-to-Image Generation [22, 23], Video Action
Recognition [33], and applications in the Biomedical do-
main [38]. CLIP-like pre-training has been extended to
other modalities as well, such as CLAP for Audio and Lan-
guage [5].

However, despite their broad success, a fundamen-
tal question remains unanswered: “Can Vision Language
Embedding Models understand simple Image Transforma-
tions?” This question is particularly crucial as these mod-
els are increasingly deployed for image editing tasks, where
understanding basic transformations is essential for mean-
ingful manipulation. As shown in Figure 1, our systematic
evaluation reveals a significant gap between human and ma-
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Figure 1. Comparison of image augmentation understanding
between humans and Vision Language Models (CLIP/SigLIP).
While humans can recognize and describe image transformations
like rotation, brightness adjustment, and contrast changes, Vision
Language Models show significant limitations in comprehending
these basic image manipulations.

chine understanding of common image modifications.
Understanding image augmentations is fundamental for

robust visual reasoning, as real-world images frequently ap-
pear with variations in brightness, contrast, rotation, and
other transformations. While these models are designed to
exhibit robustness and invariant behavior to standard im-
age transforms, we argue that this invariance might come
at the cost of explicit understanding. Although invariance
was valuable for earlier models trained in data-constrained
environments [8] on datasets like ImageNet [24], modern
foundation models trained on vast amounts of data should
ideally possess both invariance when needed and explicit
understanding of transformations when required.
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Through comprehensive evaluation of CLIP and SigLIP
responses to various controlled augmentations, we demon-
strate significant limitations in these models’ ability to rea-
son about simple image transformations. Our findings have
important implications for downstream tasks that rely on
these models, particularly in applications requiring explicit
understanding of image modifications. This work not only
highlights a critical gap in current Vision Language Models
but also emphasizes the need for developing approaches that
can better capture fundamental aspects of visual reasoning.

2. Related Works
Spatial Reasoning: Multiple works have been done to
evaluate spatial reasoning in CLIP-related models. The
paper ”Visual-Spatial Reasoning” [13] shows that Vision
Language models like CLIP are not good in spatial rea-
soning. ReCLIP [30] re-purposes CLIP to extend it to
tasks related to Spatial Reasoning by introducing a Spatial
Relation Resolver. Lewis et al. [11] show that CLIP models
perform poorly on compositional visual reasoning tasks and
cannot encode compositional concepts or bind variables in
a structure-sensitive way (e.g., differentiating “cube behind
sphere” from “sphere behind cube”). OmniCLIP [14]
shows that CLIP falls short in capturing and integrating
spatial-temporal features which is essential for video
recognition and proposes a framework to extend CLIP for
spatial temporal features for video recognition.

Linguistic Reasoning: Studies have shown that CLIP
also does not perform well on pure linguistic tasks. Sam
et al. [25] show that CLIP’s embedding space lacks the
structure of their purely text-based alternatives (e.g.,
Text(“King”) − Text(“Man”) + Text(“Woman”) ≈
Text(“Queen”)). CyCLIP [6] demonstrates that image and
text representations learned by CLIP are not interchange-
able and can lead to inconsistent downstream predictions.

Counting: Counting is an interesting challenge where
the model must count the number of entities in an image.
Paiss et al. [18] introduce a novel training framework and
benchmark to improve the quantitative understanding of
VLMs. Ma et al. [15] enhance CLIP’s ability to count with
a focus on estimating crowd sizes from images. Zhang
et al. [39] studied the question “Can CLIP Count Stars?”
and showed that CLIP is not reliable in counting stars and
contains a quantity bias.

Robustness: Multiple studies have been done to evaluate
the robustness of Vision Language Models like CLIP. Tu
et al. [32] show that CLIP exhibits strong shape bias.
Schlarmann et al. [29] propose an unsupervised adversarial
fine-tuning technique to train a robust CLIP vision encoder
that is safe against adversarial attacks. Laroudie et al. [10]

demonstrate that CLIP is overconfident in incorrect predic-
tions, making its predictions less reliable. They also show
Domain Shift Vulnerability, where there is a significant
accuracy drop when domains are shifted. They propose
LP-CLIP, a novel Knowledge distillation framework to
improve robustness in CLIP models.

3D Understanding: Recent works have explored CLIP’s
capabilities in understanding and generating 3D content.
CLIP-Forge [26] introduces a zero-shot text-to-shape
generation method that addresses the scarcity of paired
text-shape data using CLIP’s pre-trained image-text rep-
resentations. Sbrolli et al. [27] propose unsupervised
methods to enhance contrastive text-image-3D alignment
by leveraging CLIP’s knowledge of textual and 2D data
for computing neural perceived similarity between 3D
samples. CLIP2Scene [3] makes the first attempt to transfer
CLIP knowledge to 3D scene understanding, achieving
impressive results in annotation-free 3D semantic segmen-
tation and fine-tuning scenarios. CISP [28] introduces a
framework to enhance 3D shape synthesis from images by
aligning 2D images with 3D shapes in a shared embedding
space, showing that incorporating explicit 3D knowledge
can improve generation coherence compared to standard
CLIP-guided models.

3. Dataset & Augmentation Methodology
To thoroughly evaluate the image-level understanding of
VLMs, we created an augmented version of the Flickr8k [9]
dataset. This dataset was chosen for its diverse range of im-
ages and corresponding captions, providing a robust foun-
dation for our experiments. We developed a systematic ap-
proach to apply a variety of image transformations, ensur-
ing each augmented image was paired with a detailed natu-
ral language description of the applied modification. This
section outlines our data collection process, the specific
augmentation techniques employed, and the distribution of
these augmentations across the dataset.

3.1. Data Collection
We used Flicker8k dataset [9] and developed a simple anno-
tation technique to create our augmented dataset. For each
image-caption pair, we apply a random augmentation and
append the transformation description to the original cap-
tion:

“A child in a pink dress is climbing up a set of stairs in
an entry way, this image has decreased sharpness”

This approach creates a parallel dataset where each aug-
mented image is paired with an explicitly described trans-
formation.
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3.2. Image Augmentation Methodology
We implemented 24 image transformations across six cat-
egories using PyTorch’s torchvision.transforms
library[16]:

3.2.1. Geometric Transformations
• Rotations: Four angles (45, 90, 180, 270)
• Flips: Horizontal and vertical

3.2.2. Color Space Modifications
Bidirectional adjustments for:
• Brightness: ±50% modifications
• Contrast: Similar bidirectional adjustments
• Saturation: Controlled adjustments to color intensity
• Hue: Warm color shifts (hue=0.1)

3.2.3. Clarity and Focus Transformations
• Blur: Gaussian blur (kernel size 5,5)
• Sharpness: Bidirectional modifications (±50%)

3.2.4. Geometric Distortions
• Perspective: Controlled shifts (distortion scale=0.3)
• Affine: Shear (30), Translation (20%), Scale (20%)

3.2.5. Resolution and Size Modifications
• Center Crop: 224px crop from 256px images
• Aspect Ratio: Horizontal stretching (160×256 pixels)

3.2.6. Image Processing Effects
• Noise: Gaussian noise (σ = 0.1)
• Intensity: Solarization (threshold=128), Posterization

(2-bit), Equalization
• Color Inversion: Complete color space inversion

Each augmented image was paired with its original cap-
tion plus a description of the applied transformation.

3.3. Data Distribution
As shown in Figure 2, we implemented diverse augmenta-
tions with balanced coverage across transformation types.
The categorical analysis (Figure 3) shows that color trans-
formations constitute approximately 43.6% of all augmen-
tations, followed by processing transformations (41.1%),
distortion effects (7.8%), and clarity adjustments (7.5%).

Each category serves a specific evaluation purpose:
• Geometric: Tests spatial understanding (rotation, flip-

ping)
• Color: Evaluates perception of color variations
• Clarity: Assesses recognition under different sharpness

levels
• Distortion: Tests robustness to perspective and affine

changes
• Size: Evaluates performance under dimensional changes
• Processing: Assesses robustness to image processing ef-

fects
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Figure 2. Distribution of individual augmentations applied to the
Flickr8k dataset. The augmentations span across multiple trans-
formation types including geometric (rotations, flips), color ad-
justments (brightness, contrast, saturation), clarity modifications
(blur, sharpness), and various image processing effects.
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Figure 3. Distribution of augmentations applied to the dataset.
The augmentations are grouped into six primary categories: Ge-
ometric (rotations and flips), Color (brightness, contrast, satura-
tion, and hue adjustments), Clarity (blur and sharpness), Distor-
tion (perspective and affine transformations), Size (cropping and
stretching), and Processing (noise, solarization, posterization, and
other effects).

This distribution ensures comprehensive evaluation of
model capabilities across different types of image modifi-
cations.

4. Evaluation of Vision Language Models

In this section, we present a comprehensive evaluation
of VLMs, specifically focusing on their ability to under-
stand and process image augmentations. Our evaluation is
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structured into three key experiments: understanding aug-
mented descriptions, matching augmented images with de-
scriptions, and classifying image transformations. Each ex-
periment is designed to test different aspects of the mod-
els’ capabilities, providing a holistic view of their strengths
and limitations. Through these experiments, we aim to un-
cover the extent to which VLMs can accurately interpret
and respond to various image modifications, shedding light
on their potential and areas for improvement.

4.1. Understanding Augmented Descriptions
We first assess the ability of VLMs to accurately associate
textual descriptions of image augmentations with their cor-
responding modified images. This evaluation aims to deter-
mine whether the models can comprehend and link the spec-
ified transformations described in text to the visual alter-
ations present in the images. By examining the relationship
between the augmented descriptions and the visual changes,
we can gauge the models’ proficiency in understanding and
interpreting basic image modifications.

4.1.1. Methodology
For each image-caption pair (I, C), we:
1. Generate an augmented image Iaug using a random

transformation T
2. Create an augmented caption Caug by appending the

transformation description to the original caption
3. Compare similarity scores:

• s1 = sim(Iaug, Caug): Similarity between aug-
mented image and augmented caption

• s2 = sim(Iorig, Caug): Similarity between original
image and augmented caption

4. Consider prediction correct if s1 > s2
Mathematically, the accuracy is computed as:

Accuracy =
1

N

N∑
i=1

⊮[sim(I(i)aug, C
(i)
aug) > sim(I

(i)
orig, C

(i)
aug)]

(1)
where N is the total number of samples and ⊮[·] is the indi-
cator function.

4.1.2. Results

Table 1. Experiment 1 Overall Accuracy Comparison Across
Models

Model Accuracy (%)

CLIP ViT-B/32 42.80
CLIP ViT-B/16 40.87
CLIP ViT-L/14 43.10
SigLIP Base 224 45.78
SigLIP Base 256 Multilingual 47.21

Table 1 shows the accuracy across different model vari-
ants.
• Model Architecture Impact: Larger models (e.g., ViT-

L/14) generally show improved performance, suggest-
ing that increased model capacity helps in understand-
ing transformation descriptions. Similarly, CLIP mod-
els seem to perform better compared to SigLIP models
on some individual types of transformations, as shown in
Figure 4 but SigLIP outperforms CLIP when comparing
mean accuracy.

• Transformation Types: Models show varying perfor-
mance across different types of augmentations. CLIP and
SigLIP perform better in Color and Distortion based aug-
mentations as compared to rest of augmentations however
SiGLIP seems to perform better in size and processing
based augmentations as shown in Figure 5

4.2. Matching Augmented Images with Descriptions
This evaluation examines the ability of VLMs to accurately
match transformed images with their corresponding aug-
mented textual descriptions. The objective is to determine
whether the models can effectively identify when an aug-
mented image corresponds to a description that includes
specific transformation details, as opposed to a descrip-
tion without such details. By evaluating the models’ ca-
pacity to link visual modifications with the appropriate tex-
tual descriptions, we gain insights into their effectiveness in
image-text alignment tasks.

4.2.1. Methodology
For each sample i in the dataset, we perform the following
steps:

First, we select an original image I(i) and apply an aug-
mentation transformation T (i) to obtain the augmented im-
age:

I(i)aug = T (i)
(
I(i)

)
(2)

Next, we prepare the corresponding captions. We ob-
tain the original caption C

(i)
orig associated with I(i) and de-

fine the textual description of the transformation T (i) as
desc

(
T (i)

)
. The augmented caption is then created by ap-

pending the augmentation description to the original cap-
tion:

C(i)
aug = C

(i)
orig + ”, ” + desc

(
T (i)

)
(3)

We compute the similarity between the augmented im-
age and both the original and augmented captions. The sim-
ilarity with the original caption is:

s
(i)
1 = sim

(
I(i)aug, C

(i)
orig

)
(4)

and the similarity with the augmented caption is:

s
(i)
2 = sim

(
I(i)aug, C

(i)
aug

)
(5)
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Figure 4. Accuracy comparison of model performance on augmented prompt recognition. Higher values indicate better understanding of
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Figure 5. Comparison of model performance on augmentations
grouped according to their properties.

where sim(I, C) denotes the similarity function (e.g., co-
sine similarity) between the embeddings of image I and
caption C.

The model is considered to have correctly associated the
augmented image with the augmented caption if:

s
(i)
2 > s

(i)
1 (6)

The overall accuracy over the dataset is computed as:

Accuracy =
1

N

N∑
i=1

⊮
[
s
(i)
2 > s

(i)
1

]
(7)

where N is the total number of samples, and ⊮[ · ] is the
indicator function defined as:

⊮ [ condition ] =

{
1, if condition is true
0, if condition is false

(8)

4.2.2. Analysis
The results of Experiment 2 reveal some interesting analy-
sis as shown in Table 2. In experiment 2, all CLIP mod-
els perform really well in terms of accuracy showing given
an augmented image, Vision Language Models have a bet-
ter tendency to recognize the augmented prompt in contrast
to the actual prompt. However, figure 6 shows that there
is a very small difference in the similarity score indicating
that even though CLIP models perform very well, they can
not differentiate between the normal prompt and augmented
prompt really well.

4.2.3. Per-Augmentation Analysis
Figure 7 shows the results of CLIP and SigLIP for experi-
ment 2 per augmentation category, these results reflect our
initial analysis that CLIP model is performing well in differ-
entiating between original prompt and augmented prompt
when we calculate the similarity. Figure 8 shows the per-
formance of CLIP and SigLIP when grouped by the cat-
egories mentioned earlier and further strengthen the result
that CLIP models are performing better.
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Figure 7. Per Augmentation Accuracy Experiment 2

Table 2. Experiment 2 Mean Accuracy Comparison

Model Mean Accuracy

CLIP ViT-B/16 99.57%
CLIP ViT-B/32 98.67%
CLIP ViT-L/14 98.15%
SigLIP Base 224 64.40%
SigLIP Base 256 Multilingual 47.41%

4.3. Classifying Image Transformations

This evaluation assesses the ability of VLMs to accurately
identify specific image transformations from a predefined

set of augmentations. Unlike the previous evaluations,
which focused on pairwise comparisons, this assessment
tests the models’ direct classification capabilities across a
comprehensive range of augmentation types. By examining
how well the models can classify various image modifica-
tions, we can better understand their ability to recognize and
categorize different types of visual changes.

4.3.1. Methodology

For each augmented image Iaug, we perform the following
steps:

First, we present the model with the augmented image
Iaug and compare it against all possible augmentation de-
scriptions A, consisting of 27 types as described in Section
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Table 3. Comparison of Top-1 and Top-5 Accuracies for Each Model

Model Top-1 Accuracy (%) Top-5 Accuracy (%)

ViT-B/32 3.61 18.40
ViT-B/16 3.50 17.12
ViT-L/14 3.57 15.28
SigLIP Base 224 2.81 16.40
SigLIP Base 256 Multilingual 3.19 18.06
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Figure 8. Per Augmentation Accuracy Experiment 2

3.1. For each augmentation description a ∈ A, we calcu-
late the similarity score between the image and the textual
description:

scorea = sim (Iaug, “a”) (9)

We rank all augmentation descriptions based on their
similarity scores in descending order. The rank of the true
augmentation description t is determined by:

rankt = |{a ∈ A : scorea > scoret}|+ 1 (10)

We evaluate the model’s performance using the follow-
ing metrics:
• Top-1 Accuracy: The proportion of times the correct

augmentation t is ranked first (rankt = 1).
• Top-5 Accuracy: The proportion of times t is among the

top five predictions (rankt ≤ 5).
• Mean Rank: The average rank position of the correct

augmentation t across all samples.
This approach assesses the model’s ability to accurately

identify the augmentation applied to an image by matching
it with the correct textual description.

4.3.2. Results
This experiment shows Vision Language Understanding of
Augmentations where can a model associate itself with the

correct Augmentation. Figure 9 shows the Top-1% accu-
racy performance of Vision Language Models on just iden-
tifying the correct augmentation class where for most of the
augmentation, the accuracy is 0% and model was not able
to identify a single correct example. Table 3 compares the
Top-1% and Top-5% accuracy and shows that Vision Lan-
guage Model can not classify the augmentation correctly.

5. Impact on Downstream task

With the rise of AI in Image/Video Editing[31], this
study reveals an important lack of understanding of the
image level in vision language models. These models,
predominantly built on CLIP[21] as their backbone ar-
chitecture, form the foundation of numerous downstream
tasks such as Image Generation[23][33], Controlled Im-
age Generation models [37][12][35][20], Image-to-Image
Editing[19][4][17] and multiple other downstream tasks.
CLIP-based architectures, which align visual and textual
representations through contrastive learning, have demon-
strated remarkable capabilities in understanding semantic
content. However, our analysis exposes a critical limitation
in their spatial understanding of images. Different types of
image transformation are a basic tool in traditional image
editing tools such as Photoshop[1], yet modern AI systems
struggle with these operations. Table 4 shows examples
of common AI Image editing models, Instruct Pix2Pix[2],
Dall.E 3[7], and IP Adapter[34] with the prompt ”Rotate
the input image 90 degrees”. The results demonstrate
that none of these CLIP-powered models was able to under-
stand this basic instruction and failed to generate an image
with the requested transformation applied. This fundamen-
tal limitation suggests that despite their impressive semantic
capabilities, current CLIP-based models lack a comprehen-
sive understanding of image structure and spatial relation-
ships due to their invariant nature which comes at the cost
of explicit spatial understanding. This paper motivates us
to think about newer training paradigms for Vision Lan-
guage Models that balance invariance with explicit trans-
formation awareness, where models can have global con-
text, understand images at a deeper structural level beyond
just semantic content, and reason about spatial manipula-
tions when required. Addressing these limitations will help
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Model Input Image Output Image

DALL·E

Instruct Pix2Pix

IP Adapter

Table 4. Qualitative analysis table comparing input images and output transformations (rotation 90 degrees) for different models.

unlock newer capabilities in downstream tasks, potentially
bridging the gap between AI-powered and traditional image
editing tools.
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